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Correlation length exponent in the three-dimensional fuse network
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We present numerical measurements of the critical correlation length experenbe three-dimensional
fuse model. Using sulfficiently broad threshold distributions to ensure that the system is the strong-disorder
regime, we determine to be»=0.83+0.04 based on analyzing the fluctuations of the survival probability. This
value is different from that of ordinary percolation, which is 0.88.
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It is already twenty years since the publication of the first(meaning that the statistical distribution pfvalues is inde-
experimental evidence of scaling in the morphology of brittlependent of position The correlation length exponemnthas
fractureq1]. About seven years later it was proposed that nothe value 4/3 in two-dimensional percolation and 0.88 in
only is there scaling, but the scaling propertiesamaversal]  three-dimensional percolatiofY]. It is by no means given
in the sense that they do not depend on material propertigbat » should be the same in the brittle fracture problem—
[2,3]. There is now mounting evidence for this hypothesis,and Toussaint and Pride suggest that it is equal {8]2It
which may be expressed as the scaling invariance was suggested by Hansen and Schmittbuhl based on numeri-

) iy Lo cal simulations that the two-dimensional fuse model has
m(Z;X,Y) = NN ZAXNY), (1) =4/3,i.e., the value found in the pure percolation problem.
of , which is the probability density that at positiny) in ~ Large-scale simulations by Nukaga al. [6], however, show
the average fracture plane, the fracture is at heiggiven that the value is close_ tm;l.56. When the correlation I_ength
that it is atz=0 at(0, 0), with ¢ as the universal roughness approaches the localization lendttgradients develop in the
exponent having a value very close to 0.80 for a large clasd@mage— can no longer be regarded as spatially
of materials. One experimentally important consequence cfiationary—and using arguments from gradient percolation

this scaling is that the average fracture wigttscales as [9], Hansen and Schmittbuhl suggested the relation
w~ L¢ (2 2v
' = . 4
=1+2 4

wherelL is the linear size of the average fracture plane.

Ever since the proposal of universality, it has remained &ecent numerical calculations gives=0.74+0.03 [10],

theoretical challenge to explain this value. Recently, it wagynile the value inferred from Nukalat al. [6] suggests,
suggested by Hansen and Schmittbuhl that it has its origin in. 5 76 \when using Eq4).

the fracture process being a correlated percolation process |+ is the aim of this paper to measurein the three-

[4]. The essence of the argument is based on the existence @fnensional fuse model. We find the value0.83+0.04.

a localization length and a correlation lengthj that grows e three-dimensional percolation value0.88 is slightly
during the breakdown process. The localization length degside the error bars of this value. However, we believe it is
pends on the disorder in the material: Stronger disordeyjikely that the three-dimensional fuse model is in the uni-
means larger localization length. Whether the Iocal|zat|or\,ersa|ity class of ordinary percolation as long as the two-
length diverges for large but finite disorder or it only reachesyimensional one clearly is not. The roughness exporent
this limit for infinite disorder is still a question that has not \,as measured by Batrouni and Hansft?] to be ¢
been answered definitively. Toussaint and Hang&nfind  —g g24+0.05. Using Eq(4) with »=0.83, we findZ=0.62.
within a mean field approximation for the two-dimensional yence the value for we report here is consistent with the

fuse model that an infinite localization length is only ob- roughness exponent measured in R&g. We note, how-

tained in the limit of infinite disorder limit in an infinitely /o thatz=0.62 is far from the value reported by Réisénen
large system. In the present paper, we claim that infinite log; 4. [13], claiming it to be identical to the minimal energy
calization length indeed is attained for finite disorder in the,qg it £=0.41+0.02[14].

three-dimensional fuse model.
For correlation lengthg much smaller than the localiza-
tion lengthl, Hansen and Schmittbufd] assumed a relation

The fuse model that we study consists of an oriented
simple cubic lattice. As in Refl12], we useperiodic bound-
ary conditions in all directiong15] and the average current
E~lp-pd™, 3) flows in the(1,1,1) direction. Each pond is an Ohmic resistor
up to a threshold value. When this value is reached, the re-
wherep is the local damage density apg is the damage sistor turns irreversibly into an insulator. The threshold val-
density at failure. This relation is taken directly from perco-ues are drawn from a spatially uncorrelated probability den-
lation theory. The reason it is only valid for large localization sity p(t). A voltage drop equal to unity is set up across the
lengths | is that p is assumed to be spatially stationary lattice along a given plane orthogonal to {fi€l,1) direction.
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FIG. 1. Normalized histogram where each bin is averaged over FIG. 2. Plot of natural logarithm of the critical damage fluctua-
a plane orthogonal to thel,1,1) direction forD=10. The position  tions W,=((p?)—{p)?)¥/2 versus logarithm of system side The
of the damage zone for each sample is adjusted so thegriter of  disorder isD=10, 12, 15, and 20, respectively, and the data for each
massis at the center of the plot before averaging. This is in contrastifferent level of disorder are shifted vertically in order to separate
to the damage profile averaging performed in R&8] where the  them. The slopes are in that order for=10: 1.19,D=12: 1.22,
maximumof each damage profile was used as center point. Th®=15: 1.20, andD=20: 1.20. Taking the uncertainty in the deter-
latter procedure will always produce a cusp. mination of each individual slope into account, we estimate 1/

. . _ =1.20£0.06, givingr=0.83+0.04.
The currents are then calculated using the conjugate gradient

algorithm[16]. After the currents have been determined, the middle. Such a maximum is much less pronounced for the

bond having the largest ratio m@x maxt) is determined. Stronger disorder§.e., largerD value_s we studied. It should

This bond is then removed and the currents are recalculateR€ noted, however, that the averaging procedure we use em-

We do not allow the final crack to cross the plane alongPhasizes the region with the largest damage, making the vis-

which the voltage drop is imposed. This simplifies the analyJble maximum in Fig. 1 partly a result of the averaging pro-

sis of the final crack breaking the network apart, while itcess. We also point out that damage density for regions away

only imposes weak finite size corrections to fracture patterndfom the maximum varies for different lattice sizes. This is
The threshold valuesconstructed by setting=r®, where ~ Most likely caused by sta_tlst|ce_1l size effects in the averaging

r is drawn from a uniform distribution on the unit interval Process when we apply it on finite lattices. _

[17]. This corresponds to a probability denstft) «t~2* on Follqulng pergolgtlon analys@?], we define the §urV|vaI

the interval 0<t<1 with 8=1/D. The parameteD >0 con- probab|I|t_yH |nd|cat|ng the relative number of Iat_tlces that

trols the width of the distribution: Larger values Bfcorre- ~ has survived for a given average damageAssuming that

sponds to stronger disorder. In order to ensure that our resul{8€ disorder is broad enough so tipas independent of and

are obtained in the strong disorder phase of the fuse moddfiere is a finite critical value op=p. at which 50% of the

we studiedD=10, 12, 15, and 20. Our system sizes varied/attices survives, we have that

from L=6-24with 20 000 samples generated for the small- -

I

est sizes to 2000 samples for the largest sizes. 0.66- [x D=10 -
With D=20, the smallest threshold values generated are A D=12
of the order(24%)~2~ 10783 The system has, however, still 0 Bz%g

not entered purely screened percolation regime. With this 0-64-
level of disorder, the system fails when a fraction of about
0.6 of the bonds have failed. The threshold values of the . gp
bonds that fail near the end of the process are abodf 0.6
~ 10 4—which is of the order of the currents that are carried
by the bonds in the system. Hence there is competition be: 0.6
tween threshold values and currents, making the failure pro-
cess a correlated one rather than a pure percolation one eve
in this seemingly extreme case.

Figure 1 shows the damage profile in the current direction 0 o o0 o006 - 008
of the random fuse model witb=10. Each profile is the -1/0.83
average over thousands of samples for srab hundreds
of samples for largé.. We denote th¢l,1,]) direction thez FIG. 3. (py) plotted against.™” with »=0.83.D=10(x), D
direction. We define the damage as the normalized averagei2 (A), D=15(0), and D=20 (+). As L— the straight lines
number of burned-out fuses in the plane orthogonal tozthe extrapolate to the thresholgs=0.578, p,=0.590, p,=0.604, and
direction atz. The distribution has a weak maximum in the p.=0.619, respectively.

0.58 -

L
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FIG. 4. We plotW, as a function ofp). The data are the same FIG. 5. p plotted against 1D and extrapolated to infinite disor-
as those used in Figs. 2 and 3. der giving p.(«)=0.66. Extrapolating the straight line, towards in-
creasing 1D values, we find thatp. becomes negative for
1 1/D>0.75.
IT=®[(p-pL™"]. (5

This scaling ansatz implies that both the mean value of thecreened19]. This result strongly indicates that there is a
density of broken bondgp) and the fluctuations((p?) strong disorder regime for finite disorders wihlarger than

—-(p)>)*? at breakdown scales &s'”” using zero in the three-dimensional fuse model. In fact, extrapolat-
ing the straight line in Fig. 5 towards largerD Aalues will
) :f p(d—H>dp (6) result inp, reaching zero and becoming negativéat 1.33.
dp ' This is physically impossible ang. remains zero in this

range. This indicates that there is a transition from a perco-
lationlike regime withp,>0 for D>1.33 to a regime with
drl p.=0 for D<1.33. This latter regime has been described as
(P = (p)*= f (p—<p>)2(d—>dp- (7)  the diffuse localization regime in Reffl1,5.
P In summary, we have determined the correlation length
In Fig. 2 the fluctuations of the density of broken bonds,exponent in the three-dimensional fuse model to ibe
W,=(p?—(p)?, have been plotted against the system kize =0.83+0.04. Furthermore, using E@), this is consistent
The mean value of the slopes gives0.83+0.04 which With the previously measured roughness expongnt
gives a roughness exponegt0.62+0.03 in the three- =0.62+0.05[12], lending support to the scenario proposed
dimensional fuse model when using E@). This is consis- by Hansen and Schmittbuf#] for understanding the univer-

and

tent with the previous measurements in R&g]. sality of the roughness exponent in the fuse model and brittle
We now turn to the scaling dp). From finite-size scaling fracture. Our analysis was based on studying the fuse model

develop in a percolationlike manner wifhspationally sta-
8) tionary so that the tools developed for studying that problem
could be used in the present one. We note that in this regime,
. » . one will not see the fracture roughness scaling of E&.
onL whereA is some positive constant. We show this rela-tg fracture will have a fractal structure. When, on the other
tion f_or_dlff_erent v_alues oD in Fig. 3. hand, the disorder is weak enough for localization to sapin,
Eliminating lattice sizd. between Eqs(7) and(8) leads g g jonger spatially stationary, making a direct measure-
to a linear dependence betweal and(p). We show this in et of,, based on fluctuations ip impossible. However, it
Fig. 4 . . ) is in this regime fracture roughness scaling as in @g).is
This way of measuring the critical exponentis much  gseen as shown in ReffL2].
less sensitive than the one presented in Fig. 2. From standard
percolation in a simple cubic lattice the threshold for an in- We thank G. G. Batrouni, H. A. Knudsen, J. Schmittbuhl,
finite system igp.=0.752[7]. The extrapolations done in Fig. and R. Toussaint for helpful discussions. B. Skaflestad is also
5 show results lying below this threshold. However, this is togreatly acknowledged for giving help and hints during the
be expected as the percolation process in this limit igmplementation of the numerical simulations.

A
<D>=Dc+m
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