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We present numerical measurements of the critical correlation length exponentn in the three-dimensional
fuse model. Using sufficiently broad threshold distributions to ensure that the system is the strong-disorder
regime, we determinen to ben=0.83±0.04 based on analyzing the fluctuations of the survival probability. This
value is different from that of ordinary percolation, which is 0.88.
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It is already twenty years since the publication of the first
experimental evidence of scaling in the morphology of brittle
fractures[1]. About seven years later it was proposed that not
only is there scaling, but the scaling properties areuniversal,
in the sense that they do not depend on material properties
[2,3]. There is now mounting evidence for this hypothesis,
which may be expressed as the scaling invariance

psz;x,yd = lzpslzz;lx,lyd, s1d

of p, which is the probability density that at positionsx,yd in
the average fracture plane, the fracture is at heightz given
that it is atz=0 at (0, 0), with z as the universal roughness
exponent having a value very close to 0.80 for a large class
of materials. One experimentally important consequence of
this scaling is that the average fracture widthw scales as

w , Lz, s2d

whereL is the linear size of the average fracture plane.
Ever since the proposal of universality, it has remained a

theoretical challenge to explain this value. Recently, it was
suggested by Hansen and Schmittbuhl that it has its origin in
the fracture process being a correlated percolation process
[4]. The essence of the argument is based on the existence of
a localization lengthl and a correlation lengthj that grows
during the breakdown process. The localization length de-
pends on the disorder in the material: Stronger disorder
means larger localization length. Whether the localization
length diverges for large but finite disorder or it only reaches
this limit for infinite disorder is still a question that has not
been answered definitively. Toussaint and Hansen[5] find
within a mean field approximation for the two-dimensional
fuse model that an infinite localization length is only ob-
tained in the limit of infinite disorder limit in an infinitely
large system. In the present paper, we claim that infinite lo-
calization length indeed is attained for finite disorder in the
three-dimensional fuse model.

For correlation lengthsj much smaller than the localiza-
tion lengthl, Hansen and Schmittbuhl[4] assumed a relation

j , up − pcu−n, s3d

where p is the local damage density andpc is the damage
density at failure. This relation is taken directly from perco-
lation theory. The reason it is only valid for large localization
lengths l is that p is assumed to be spatially stationary

(meaning that the statistical distribution ofp values is inde-
pendent of position). The correlation length exponentn has
the value 4/3 in two-dimensional percolation and 0.88 in
three-dimensional percolation[7]. It is by no means given
that n should be the same in the brittle fracture problem—
and Toussaint and Pride suggest that it is equal to 2[8]. It
was suggested by Hansen and Schmittbuhl based on numeri-
cal simulations that the two-dimensional fuse model hasn
=4/3, i.e., the value found in the pure percolation problem.
Large-scale simulations by Nukalaet al. [6], however, show
that the value is close ton=1.56. When the correlation length
approaches the localization lengthl, gradients develop in the
damage—p can no longer be regarded as spatially
stationary—and using arguments from gradient percolation
[9], Hansen and Schmittbuhl suggested the relation

z =
2n

1 + 2n
. s4d

Recent numerical calculations givesz=0.74±0.03 [10],
while the value inferred from Nukalaet al. [6] suggestsz
=0.76 when using Eq.(4).

It is the aim of this paper to measuren in the three-
dimensional fuse model. We find the valuen=0.83±0.04.
The three-dimensional percolation valuen=0.88 is slightly
outside the error bars of this value. However, we believe it is
unlikely that the three-dimensional fuse model is in the uni-
versality class of ordinary percolation as long as the two-
dimensional one clearly is not. The roughness exponentz
was measured by Batrouni and Hansen[12] to be z
=0.62±0.05. Using Eq.(4) with n=0.83, we findz=0.62.
Hence the value forn we report here is consistent with the
roughness exponent measured in Ref.[12]. We note, how-
ever, thatz=0.62 is far from the value reported by Räisänen
et al. [13], claiming it to be identical to the minimal energy
result,z=0.41±0.02[14].

The fuse model that we study consists of an oriented
simple cubic lattice. As in Ref.[12], we useperiodic bound-
ary conditions in all directions[15] and the average current
flows in the(1,1,1) direction. Each bond is an Ohmic resistor
up to a threshold value. When this value is reached, the re-
sistor turns irreversibly into an insulator. The threshold val-
ues are drawn from a spatially uncorrelated probability den-
sity pstd. A voltage drop equal to unity is set up across the
lattice along a given plane orthogonal to the(1,1,1) direction.
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The currents are then calculated using the conjugate gradient
algorithm[16]. After the currentsi have been determined, the
bond having the largest ratio maxsid /maxstd is determined.
This bond is then removed and the currents are recalculated.
We do not allow the final crack to cross the plane along
which the voltage drop is imposed. This simplifies the analy-
sis of the final crack breaking the network apart, while it
only imposes weak finite size corrections to fracture patterns.

The threshold valuest constructed by settingt=rD, where
r is drawn from a uniform distribution on the unit interval
[17]. This corresponds to a probability densitypstd~ t−1+b on
the interval 0, t,1 with b=1/D. The parameterD.0 con-
trols the width of the distribution: Larger values ofD corre-
sponds to stronger disorder. In order to ensure that our results
are obtained in the strong disorder phase of the fuse model,
we studiedD=10, 12, 15, and 20. Our system sizes varied
from L=6–24with 20 000 samples generated for the small-
est sizes to 2000 samples for the largest sizes.

With D=20, the smallest threshold values generated are
of the orders243d−20<10−83. The system has, however, still
not entered purely screened percolation regime. With this
level of disorder, the system fails when a fraction of about
0.6 of the bonds have failed. The threshold values of the
bonds that fail near the end of the process are about 0.620

<10−4—which is of the order of the currents that are carried
by the bonds in the system. Hence there is competition be-
tween threshold values and currents, making the failure pro-
cess a correlated one rather than a pure percolation one even
in this seemingly extreme case.

Figure 1 shows the damage profile in the current direction
of the random fuse model withD=10. Each profile is the
average over thousands of samples for smallL to hundreds
of samples for largeL. We denote the(1,1,1) direction thez
direction. We define the damage as the normalized average
number of burned-out fuses in the plane orthogonal to thez
direction atz. The distribution has a weak maximum in the

middle. Such a maximum is much less pronounced for the
stronger disorders(i.e., largerD values) we studied. It should
be noted, however, that the averaging procedure we use em-
phasizes the region with the largest damage, making the vis-
ible maximum in Fig. 1 partly a result of the averaging pro-
cess. We also point out that damage density for regions away
from the maximum varies for different lattice sizes. This is
most likely caused by statistical size effects in the averaging
process when we apply it on finite lattices.

Following percolation analysis[7], we define the survival
probability P indicating the relative number of lattices that
has survived for a given average damagep. Assuming that
the disorder is broad enough so thatp is independent ofz and
there is a finite critical value ofp=pc at which 50% of the
lattices survives, we have that

FIG. 1. Normalized histogram where each bin is averaged over
a plane orthogonal to the(1,1,1) direction forD=10. The position
of the damage zone for each sample is adjusted so that itscenter of
massis at the center of the plot before averaging. This is in contrast
to the damage profile averaging performed in Ref.[18] where the
maximumof each damage profile was used as center point. The
latter procedure will always produce a cusp.

FIG. 2. Plot of natural logarithm of the critical damage fluctua-
tions Wc=skp2l−kpl2d1/2 versus logarithm of system sizeL. The
disorder isD=10, 12, 15, and 20, respectively, and the data for each
different level of disorder are shifted vertically in order to separate
them. The slopes are in that order forD=10: 1.19,D=12: 1.22,
D=15: 1.20, andD=20: 1.20. Taking the uncertainty in the deter-
mination of each individual slope into account, we estimate 1/n
=1.20±0.06, givingn=0.83±0.04.

FIG. 3. kpcl plotted againstL−1/n with n=0.83. D=10 s3d, D
=12 snd, D=15 ssd, and D=20 s+d. As L→` the straight lines
extrapolate to the thresholdspc=0.578,pc=0.590,pc=0.604, and
pc=0.619, respectively.
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P = Ffsp − pcdL1/ng. s5d

This scaling ansatz implies that both the mean value of the
density of broken bondskpl and the fluctuationsskp2l
−kpl2d1/2 at breakdown scales asL−1/n using

kpl =E pSdP

dp
Ddp, s6d

and

kp2l − kpl2 =E sp − kpld2SdP

dp
Ddp. s7d

In Fig. 2 the fluctuations of the density of broken bonds,
Wc=Îkp2l−kpl2, have been plotted against the system sizeL.
The mean value of the slopes givesn=0.83±0.04 which
gives a roughness exponentz=0.62±0.03 in the three-
dimensional fuse model when using Eq.(4). This is consis-
tent with the previous measurements in Ref.[12].

We now turn to the scaling ofkpl. From finite-size scaling
analysis, we expect the functional dependency

kpl = pc +
A

L1/n s8d

on L whereA is some positive constant. We show this rela-
tion for different values ofD in Fig. 3.

Eliminating lattice sizeL between Eqs.(7) and (8) leads
to a linear dependence betweenWc andkpl. We show this in
Fig. 4.

This way of measuring the critical exponentn is much
less sensitive than the one presented in Fig. 2. From standard
percolation in a simple cubic lattice the threshold for an in-
finite system ispc=0.752[7]. The extrapolations done in Fig.
5 show results lying below this threshold. However, this is to
be expected as the percolation process in this limit is

screened[19]. This result strongly indicates that there is a
strong disorder regime for finite disorders withpc larger than
zero in the three-dimensional fuse model. In fact, extrapolat-
ing the straight line in Fig. 5 towards larger 1/D values will
result inpc reaching zero and becoming negative atD,1.33.
This is physically impossible andpc remains zero in this
range. This indicates that there is a transition from a perco-
lationlike regime withpc.0 for D.1.33 to a regime with
pc=0 for D,1.33. This latter regime has been described as
the diffuse localization regime in Refs.[11,5].

In summary, we have determined the correlation length
exponent in the three-dimensional fuse model to ben
=0.83±0.04. Furthermore, using Eq.(4), this is consistent
with the previously measured roughness exponentz
=0.62±0.05[12], lending support to the scenario proposed
by Hansen and Schmittbuhl[4] for understanding the univer-
sality of the roughness exponent in the fuse model and brittle
fracture. Our analysis was based on studying the fuse model
with strong enough disorder for the breakdown process to
develop in a percolationlike manner withp spationally sta-
tionary so that the tools developed for studying that problem
could be used in the present one. We note that in this regime,
one will not see the fracture roughness scaling of Eq.(1):
The fracture will have a fractal structure. When, on the other
hand, the disorder is weak enough for localization to set in,p
is no longer spatially stationary, making a direct measure-
ment ofn based on fluctuations inp impossible. However, it
is in this regime fracture roughness scaling as in Eq.(1) is
seen as shown in Ref.[12].

We thank G. G. Batrouni, H. A. Knudsen, J. Schmittbuhl,
and R. Toussaint for helpful discussions. B. Skaflestad is also
greatly acknowledged for giving help and hints during the
implementation of the numerical simulations.

FIG. 4. We plotWc as a function ofkpl. The data are the same
as those used in Figs. 2 and 3.

FIG. 5. p plotted against 1/D and extrapolated to infinite disor-
der giving pcs`d=0.66. Extrapolating the straight line, towards in-
creasing 1/D values, we find thatpc becomes negative for
1/D.0.75.
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